

In
te

rn
at

io
n

al
 J

o
u

rn
al

 o
f

C
o

n
te

m
p

o
ra

ry
 E

d
u

ca
ti

o
n

 R
es

ea
rc

h

146

NIGHTINGALE
PUBLICATIONS AND RESEARCH INTERNATIONAL]

ISSBN: 1969-1889

Vol. 8, NO. 6] IJCER
]

Abstract
Most e-assessment systems

are mainly used in simplifying

the high manual effort by

teaching personnel in

assessing the students. This

paper will be reviewing an

extension proposed for the e-

assessment systems that will

be requiring some higher-

order cognitive skills. The

most recent module will allow

programming exercises to be

assessed in regard to a

specific back-to-back testing

and test-driven development.

Although these e-assessment

systems are still a prototype,

its usage by the programming

lecturers has proved to be

practical in performing e-

assessments.

Keywords: Software testing,

Assessment, Software tests.

Online learning, E-assessment

THE USE OF E-ASSESMENT IN

COMPUTER SCIENCE EDUCATION

*MUHAMMED ABDULAZEEZ

HASSAN & **SAMIR HMED

*Federal College of Education, Zaria

**Shehushagari Colledge of Education Sokoto

Introduction
Assessing a student in the process of learning

and teaching is very important as it helps them

in measuring their learning performance as

well as identifying their individual success.

Despite so, assessment actually affects

teaching personnel in a whole different way

since they are required to put an extensive

amount of manual effort to conduct the

assessments on the students. Due to this, most

universities will try to help and support them

by implementing e-learning systems.

Nowadays, most e-assessment systems focus

more on examinations that are in their

simplest forms. This includes tests such as

input of short text or multiple-choice

questions.

The reason for this is mainly because these

systems are not suitable to be used in

assessing higher-order cognitive skills

(Heywood, 2000). However, such skills are

extremely important to be assessed in

NIGHTINGALE PUBLICATIONS
AND RESEARCH INTERNATIONAL]

AND RESEARCH

In
te

rn
at

io
n

al
 J

o
u

rn
al

 o
f

C
o

n
te

m
p

o
ra

ry
 E

d
u

ca
ti

o
n

 R
es

ea
rc

h

147

NIGHTINGALE
PUBLICATIONS AND RESEARCH INTERNATIONAL] PUBLICATIONS AND RESEARCH INTERNATIONAL]

ISSBN: 1969-1889

Vol. 8, NO. 6] IJCER
]

omputer science education since memorized knowledge will not

suitable to be assessed for these students. There are previous studies

and papers that focus on the introduction of e-assessment systems

that pointed out its new ability that made it possible to be used in education

relating to computer science and mathematics in assessing formal

specification techniques (Gruttmann, et al., 2010) as well as formal

proofs(Bohm, et al., 2008).

For the purpose of this paper as mentioned earlier, the extension of such e-

assessment systems for programming exercises as proposed by (Usener, et.

al, 2012) in addition to the type of software testing performed will be

introduced. It is also crucial for programming to be aligned with software

testing in this paper in order to make sure that the quality achieved is

adequate since assessing it is by no means a trivial task. It is also important

to note that some contrasting solutions will probably be equal in a semantic

manner while there will be a few semantically distinctive solutions that

possibly be able to solve the exercise being provided.

In addition to this, in order to introduce different techniques for testing as

well as motivating the test on software, the test case generator Muggl (Kuchen

& Majchrzak, 2009) will be incorporated in this paper. Muggl will be able to

offer the students with a system that generated the test cases individually for

them in which can be used in improving their solution prior to the final

submission electronically. Throughout this paper, a few contributions will be

made by first expanding the body of knowledge in conjunction to the

application of e-assessment in the scope of computer science education. Then,

this paper will be covering the description of the innovative approach to

integrate an e-assessment tool with an automated tool for test case

generation as proposed by Usener, Majchrzak and Kuchen (2012). Following

to this step, this paper will be highlighting the educational merits that are

brought by the e-assessment system specifically for programming as well as

for testing exercises. And finally, this paper will be reviewing the effectiveness

and acceptance of the approaches among the students.

In order to completely use these approaches, this paper has been organized

based on the following structures. Section 1 of this paper, which is this

section, introduces the topic to the readers to give a general idea on what is

being studied in this paper. Following this is Section 2 that introduces the

approach’s background while discussing on the previous work by other

c

In
te

rn
at

io
n

al
 J

o
u

rn
al

 o
f

C
o

n
te

m
p

o
ra

ry
 E

d
u

ca
ti

o
n

 R
es

ea
rc

h

148

NIGHTINGALE
PUBLICATIONS AND RESEARCH INTERNATIONAL]

ISSBN: 1969-1889

Vol. 8, NO. 6] IJCER
]

researchers that are related to the topic being studied. Section 3 on the other

hand explains the tools and their integration with an exemplary scenario

being described in Section 4. Next, a review on the effectiveness and

acceptance of the approaches among the students of computer science course

is provided in Section 5 followed by a conclusion as well as some highlights

for future work in Section 6.

Background

The foundation of this study will be highlighted in this section to further

deepen the understanding on the approach taken in this study. This study

proposes the usage of e-assessment in computer science education while

motivating two types of software testing techniques to be used for the system.

E-assessments for Computer Science Education

Assessments are important for every teaching and learning scenario since it

can help in identifying and measuring an individual’s learning achievements

(Usener & Majchrzak, 2011) as well as acting as the indicator for lecture

improvements (Chudowsky, et al., 2001). These assessments will be able to

show any clarifications are needed in certain parts of a learning unit. Hence,

it is important for both the teachers and learners. Thus, it is critical for

computer science students to be taught with analytic, creative and

constructive skills in addition to the basic knowledge so as to enable them

being capable in developing and enhancing software systems. This is

supported by the fact that almost all the relevant learning objectives in

computer science actually need constant practice and intensive participation.

By solving the exercises that are based on contents from the lecture, students

will be able to passively transfer consumed information to active knowledge

(Rohde, et al., 2008). However, because the students need to attend a mass

number of lectures, the formative assessment’s organization will be almost

impossible, especially since there is a decrease in resources and low

personnel capacities (Wannemacher, 2007) although e-assessment will be

able to solve this issue. Not to mention that it can also be considered as an

opportunity in providing formative assessments in education under

computer science courses despite the facts that most common e-assessment

systems are not suitable in examining any skills that are constructive, creative

and analytic. The reason for this is mainly because these systems will only be

In
te

rn
at

io
n

al
 J

o
u

rn
al

 o
f

C
o

n
te

m
p

o
ra

ry
 E

d
u

ca
ti

o
n

 R
es

ea
rc

h

149

NIGHTINGALE
PUBLICATIONS AND RESEARCH INTERNATIONAL] PUBLICATIONS AND RESEARCH INTERNATIONAL]

ISSBN: 1969-1889

Vol. 8, NO. 6] IJCER
]

providing simple question types most of the times that include multiple

choice questions or questions with short text answers (Jenkins & Cook, 2010).

Thus, a more opened question type is crucial to have in examining skills that

are constructive, creative and analytic.

Test-driven Development

Usually, modules will first be coded and then the test cases will be created.

However, test-driven development (TDD) or also named as test-first

development (Beck, 2002), actually proposes a reverse process of this (Astels,

2003) where a test case is first written for the intended functionality using a

unit testing tool(Koskela, 2007)before the module is being programmed. This

resulted in the process to be able to keep the system simple since it will only

be implementing functionalities that are needed. According to (Beck, 2002)

test-driven development also is able to improve the maintainability of the

codes as well as code re-usage in addition of having high level tests’ functional

coverage. Writing codes that will only corresponds to the test cases will needs

some discipline, however it will still facilitates finding of programs’ defects

right after the codes were introduced (Koskela, 2007). According to Beck

(2002), it is better to remove any defects in the early stages of development

as lesser costs will be involved.

Back-to-Back Testing

Back-to-back testing refers to the technique selected for fields where system

failure is inacceptable. A program’ prototypes, which are supposed to be

semantically equal (Roitzsch, 2005)are built based on the same specifications

by independent development teams. The yields of the prototypes executed

after an emphasis of programming is then checked and any differences

detected will be directly reported to the development groups since they imply

that one or more prototypes contains at least a defect. Testing is then iterated

until the point that every prototype carries on similarities. Although the

number of defects can drastically be reduced this method of testing is very

costly (Roitzsch, 2005). As a test that diversifies, it tries to conquer the

blemishes that most other testing strategies have because of their heuristic

nature. Hence, back-to-back testing is picked when the test required a

significant justifies on the increased efforts and can be considered as cost

effective if utilized under appropriate situations (Vouk, 1990).

In
te

rn
at

io
n

al
 J

o
u

rn
al

 o
f

C
o

n
te

m
p

o
ra

ry
 E

d
u

ca
ti

o
n

 R
es

ea
rc

h

150

NIGHTINGALE
PUBLICATIONS AND RESEARCH INTERNATIONAL]

ISSBN: 1969-1889

Vol. 8, NO. 6] IJCER
]

Previous Literature

This study will discuss on related work from three perspectives:

programming exercises’ e-assessments, automated generation of test cases

and the combinations of both approaches. As to e-assessment solutions for

programming exercise, there are already some research projects with

different evaluation techniques exist at the moment such as DUESIE, ELP and

Praktomat. Each of the frameworks offered exercises’ assessment with

respect to Java programming language although both DUESIE and Praktomat

still support other languages.

The development of Praktomat was for the purpose of aiding a programming

workshop for second year students of computer science courses. According

to Storzer, et al. (2002), Praktomat’s key features are solution testing that is

both static and dynamic in addition to the students’ capacity to comment and

view different solutions after the initial submission. Tests that are dynamic

and static are usually utilized for assessment although they can also be

utilized by the students to review their work before submission. DUESIE on

the other hand is relatively similar to Praktomat as it also utilizes static and

dynamic tests to check the style of coding as well as the functionality of the

students’ program code (Wismuller, et al., 2008).Interestingly, DUESIE

doesn't check students’ answer heretofore to spare them from understanding

their activity by trial and error method. Thus, static and dynamic test in both

Praktomat and DUESIE frameworks depend on instruments for style checking

as well as unit testing that took after the tutor’smanual amendments.

In contrast to the previous two systems, ELP is basically intended for self-

assessment and designed to help the students with almost no programming

background to learn fundamental features of Java (Bancroft, et al., 2004).

The framework gives brief exercises based on the "fill in the gap" concept with

each concentrating on one particular coding issue. A solution being turned in

is contrasted with stored sample solutions and a quick input by the auxiliary

similitude is then provided (Bancroft, et al., 2004). The input should empower

the students to reconsider and redress the answer. Despite this, ELP only

provides prompt criticism without human cooperation that is suited for small

exercises that are well defined.

The automated test case generation (TCG) is a dynamic field of research that

infers a few impediments regardless of its merits (Graham & Fewster, 1999).

For reasons of study’s scope, only the features that are directly linked with

In
te

rn
at

io
n

al
 J

o
u

rn
al

 o
f

C
o

n
te

m
p

o
ra

ry
 E

d
u

ca
ti

o
n

 R
es

ea
rc

h

151

NIGHTINGALE
PUBLICATIONS AND RESEARCH INTERNATIONAL] PUBLICATIONS AND RESEARCH INTERNATIONAL]

ISSBN: 1969-1889

Vol. 8, NO. 6] IJCER
]

Muggl will be highlighted such as shown in the list below. Despite these,

neither of the e-assessment tools described has the capacity to create test

cases for students’ programs as most of the e-assessment tools usually will

only be providing simple exercises.

1. IBIS representatively performs Java byte code while utilizinga

constraint solver regardless of its auspicious approach. The work by

Meudec & Doyle (2003) is in its initial state and there are no recent

papers have been presented on IBIS.

2. Fischer and Kuchen (2007) introduce the TDG approach for functional

logic programming specifically for Curry with the ideas being very

similar for their approach and Muggl although a constraint solver is not

included in their tool.

3. The counterpart of Muggl,Pex (de Halleux & Tillmann, 2008), is

for .NET based programs and it utilizes the Microsoft Common

Language Infrastructure. It is reported to be performing very well with

its constraint solverZ3 (Bjoerner & de Moura, 2008) being a

satisfiability module solver for the ories that is different to the concept

of Muggl’s solver.

Incorporation of EASy and Muggl

This section will be introducing EASy and Muggl before highlighting the

synergy of both tools.

EASy

The development of EASy was meant to offer a program that will be able to

help assessing various exercise electronically in computer science education

(Gruttmann, 2010). EASy specifically focus on giving exercises that are

complex that will allow students to hone their constructive, creative and

analytic skills. Hence, EASy is currently giving the practice modules for Java

programming exercises, software verification proofs, a multiple-choice as

well as mathematical proofs module.

Muggl

Muggl (Kuchen & Majchrzak, 2009)on the other hand refers to a tool for the

automated test cases generation. Unlike most tools for automated test cases

generation that are random or relying on some form of input that is pre-

In
te

rn
at

io
n

al
 J

o
u

rn
al

 o
f

C
o

n
te

m
p

o
ra

ry
 E

d
u

ca
ti

o
n

 R
es

ea
rc

h

152

NIGHTINGALE
PUBLICATIONS AND RESEARCH INTERNATIONAL]

ISSBN: 1969-1889

Vol. 8, NO. 6] IJCER
]

existing, Muggl actually uses the structure of a program in drawing the

conclusions regarding the test cases needed. Besides, Muggl only processes

Java byte-code instead of utilizing any source code.

The Tools’ Ideal Interaction

Extending EASy with the functionality of Muggl is relatively easy mainly

because it has a modular structure. In order to make Muggl able to be invoked,

EASy had to be extended so that it can have the functionality to adequately

present the results obtained from Muggl especially since the generation of

test case needs a lot of computing power. Subsequent to a short test

generation time, the result from Muggl will be provided as either a feedback

with explanation on Muggl’s interruption or a test suite of JUnit with test

scenarios being generated. Students should be motivated from viewing the

generated tests and allow them to rethink of the solutions.

Model Application

All exercises related to programming are to be submitted through EASy for

them to be for any correctness in terms of both syntactic and functional before

being corrected by the tutor. Hence, in order to motivate software testing’s

inclusion; discrete techniques for testing were incorporated into the exercise.

Based on a reasonably simple task that still offers some challenges in

conjunction to the style of programming and specifications restrictions, the

students were given a small program’s textual specification that they need to

implement and proceed in a test-driven manner. The application of the

research’s model did not only allow the students to learn how to use back-to-

back testing and TDD, but also to make a conclusion or decision based on the

interpretation of test cases.

Evaluation

With a specific end goal of getting impressions about the use and advantages

of EASy, students were inquired to fill in a survey to impart their experience

while solving the exercise through the framework utilization. Since the status

of the approach taken in this study would not simply be evaluated but

concluded for further improvement, the survey was amended with fields that

allow free text to not only present the quantitative outcomes but also

qualitative discoveries.

In
te

rn
at

io
n

al
 J

o
u

rn
al

 o
f

C
o

n
te

m
p

o
ra

ry
 E

d
u

ca
ti

o
n

 R
es

ea
rc

h

153

NIGHTINGALE
PUBLICATIONS AND RESEARCH INTERNATIONAL] PUBLICATIONS AND RESEARCH INTERNATIONAL]

ISSBN: 1969-1889

Vol. 8, NO. 6] IJCER
]

Main Results

After solving the exercise on TDD, the student’s answered few questions

related to the approach taken by the study to combine EASy and TCG. They

were asked to describe whether the approach is informative by comparing

the test case being generated with the one being given. In total, 50 students

answered the surveys and Figure 1 below shows the results of the helpfulness

of the approach as judged by the students through the comparison of the test

case being generated with the one being given.

Although its only 2%of the students found that the comparison is very helpful,

a significant34%stated that it is actually helpful. However, 36%of the

students remained neutral and stated that they at least gained some help from

the comparison. These results show that the approach is relatively promising

especially since the test scenarios’ interpretation is manageable for the

students while making their learning curve steeper.

Figure 1: Result for the helpfulness of comparing the test cases being generated

for the students.

Very Helpful Helpful Neutral Not Helpful Not Helpful at All

Series 1 1 17 18 8 6

0

10

20

In
te

rn
at

io
n

al
 J

o
u

rn
al

 o
f

C
o

n
te

m
p

o
ra

ry
 E

d
u

ca
ti

o
n

 R
es

ea
rc

h

154

NIGHTINGALE
PUBLICATIONS AND RESEARCH INTERNATIONAL]

ISSBN: 1969-1889

Vol. 8, NO. 6] IJCER
]

Evaluation - Qualitative

Even though quantitative results are already enough to judge the approach,

qualitative feedback will be able to help discussed how EASy is perceived by

the students even further and offers some hints on suitable improvements.

For reasons of scope for this study, students’ comments are not being

repeated but rather summarized.The results were so diverse when they

provide suggestions on the integration of EASy with TDG. Some students

expected the exercise to be less restrictive and inquired for shorter

specification to be presented while others found it to be too complex for them

and asked for a longer description. However, this assortment can be clarified

through the variances in skills of the students.

There are some students that recommended the explanations on how test

cases are being generated by Muggl to be provided as it can help them

understand the concept further to make improvements for their programs.

Apart from this, students also suggested that EASy should be able to

automatically compare student test cases with the exemplary test case

although this would relieve them of understanding the reason of utilizing

back-to-back testing.

Although most of the students did not know about the usage of EASyin

applicable courses, their recommendations still supported the positive

findings in utilizing EASy for proofs (Gruttmann, 2010). Despite this, there are

still a number of students who expressed scepticism while other perceived

EASy as being adequate for almost all course that excluded purely writing

texts examination. Thus, the usage of this approach in numerous natural

sciences courses as well as for some economics courses was suggested by the

students.

Conclusion and Recommendations

In this paper, an extension of a tool for e-assessment, EASy as proposed by

Usener, Majchrzak and Kuchen (2012), has been presented by adding the

functionality for programming exercises that is a part of computer science

education. This will be able to replace the paper based processing of handed

in solutions by checking them functionally and syntactically through the

integration of Muggl that automatically generate test cases. This generation is

based on the constraint solving in addition to the symbolic execution. The tool

In
te

rn
at

io
n

al
 J

o
u

rn
al

 o
f

C
o

n
te

m
p

o
ra

ry
 E

d
u

ca
ti

o
n

 R
es

ea
rc

h

155

NIGHTINGALE
PUBLICATIONS AND RESEARCH INTERNATIONAL] PUBLICATIONS AND RESEARCH INTERNATIONAL]

ISSBN: 1969-1889

Vol. 8, NO. 6] IJCER
]

will be able to help in improving students’ solutions by generating test cases

while at the same time extending their familiarity with software testing.

A survey on 50 computer science students in Malaysia have been conducted

privately to review the feasibility of this study with the result showing that

students were more motivated in using this approach and improved in

mastering the testing and programming techniques. However, some

improvements were recommended for this study although the result is rather

promising. First, an improvement needs to make on the integration ofMuggl

in EASy. The students will also need to be briefed on how test case generation

by Muggl actually work. These test cases also need to be extended so that it

will be able to support the inelegant implementation of solutions that are

syntactically correct. Besides, EASy will also need to be extended even further

to support exercise types available in computer science education as a baby

step to ultimately support complex exercise types found in other fields of

study.

Reference

Astels, D., 2003. Test Driven Development: A Practical Guide. Upper Saddle

River: Prentice-Hall.

Bancroft, P., Roe, P. & Truong, N., 2004. Static analysis of students’ Java

programs. Darlinghurst, Australian Computer Society, pp. 317-325.

Beck, K., 2002. Test-Driven Development by Example. Boston: Addison-

Wesley.

Bjoerner, N. & de Moura, L., 2008. Z3: An Efficient SMT Solver. Lecture Notes

in Computer Science, Volume 4963, pp. 337-340.

Bohm, D., Kuchen, H. & Gruttmann, S., 2008. E-assessment of mathematical

proofs – chances and challenges for students and tutors. Wuhan, IEEE

Computer Society.

Chudowsky, N., Glas, R. & Pellegrino, J., 2001. Knowing What Students Know:

The Science and Design of Educational Assessment. Washington D. C.:

National Academy Press.

de Halleux, J. & Tillmann, N., 2008. Pex-white box test generation for .NET.

Prato, s.n., pp. 134-153.

Graham, D. & Fewster, M., 1999. Software Test Automation. New York: ACM

Press.

In
te

rn
at

io
n

al
 J

o
u

rn
al

 o
f

C
o

n
te

m
p

o
ra

ry
 E

d
u

ca
ti

o
n

 R
es

ea
rc

h

156

NIGHTINGALE
PUBLICATIONS AND RESEARCH INTERNATIONAL]

ISSBN: 1969-1889

Vol. 8, NO. 6] IJCER
]

Gruttmann, S., 2010. Formatives E-Assessment in der Hochschullehre.

Munster: Monsenstein und Vannerdat.

Gruttmann, S., Kuchen, H., Majchrzak, T. & Usener, C., 2010. Computer-

supported assessment of software verification proofs – towards high

quality e-assessments in computer science education. Los Alamitos,

IEEE CS, pp. 115-121.

Heywood, J., 2000. Assessment in Higher Education. First ed. London:

Jessica Kingsley.

Jenkins, V. & Cook, J., 2010. Getting started with e-assessment, Bath:

University of Bath.

Koskela, L., 2007. Test Driven: Practical TDD and Acceptance TDD for Java

Developers. Greenwich: Manning Publications.

Kuchen, H. & Fischer, S., 2007. Systematic generation of glass-box test cases

for functionallogic programs. New York, s.n., pp. 63-74.

Kuchen, H., Gruttmann, S., Majchrzak, T. & Usener, C., 2010. Computer-

supported assessment of software verification proofs – towards high

quality e-assessments incomputer science education. Los Alamitos,

IEEE CS, pp. 115-121.

Kuchen, H. & Majchrzak, T., 2009. Automated test case generation based on

coverage analysis. Tianjin, s.n., pp. 259-266.

Majchrzak, T., 2010. Improving the technical aspects of software testing in

enterprises. International Journal of Advanced Computer Science and

Applications (IJACSA), 1(4), pp. 1-10.

Meudec, C. & Doyle, J., 2003. IBIS: an interactive bytecode inspection system,

using symbolic execution and constraint logic programming. New York,

s.n., pp. 55-58.

Rohde, P., Dyckhoff, A. & Stalljohann, P., 2008. An integrated web-based

exercise module. Crete, ACTA Press, pp. 244-249.

Roitzsch, E., 2005. Analytische Softwarequalitatssicherung in Theorie und

Praxis. Munste: Monsenstein und Vannerdat.

Storzer, M., Krinke, J. & Zeller, A., 2002. Web-basierte Programmierpraktika

mit Praktomat. Softwaretechnik-Trends, 22(3).

Usener, C. & Majchrzak, T., 2011. Evaluating the synergies of integrating e-

assessment and software testing. Edinburgh, Springer.

Vouk, M., 1990. Back-to-back testing. Information and Software Technology,

32(1), pp. 34-45.

In
te

rn
at

io
n

al
 J

o
u

rn
al

 o
f

C
o

n
te

m
p

o
ra

ry
 E

d
u

ca
ti

o
n

 R
es

ea
rc

h

157

NIGHTINGALE
PUBLICATIONS AND RESEARCH INTERNATIONAL] PUBLICATIONS AND RESEARCH INTERNATIONAL]

ISSBN: 1969-1889

Vol. 8, NO. 6] IJCER
]

Wannemacher, K., 2007. Computergestutzte Prufungsverfahren–Aspekte

der Betriebswirtschaftslehre und Informatik. In: M. Breitner, B. Bruns &

F. Lehner, eds. Trends im E-learning. Heidelberg: Physica-Verlag.

Wismuller, R., Quast, A. & Hoffmann, A., 2008. Online-Ubungssystem fur die

Programierausbildung zur Einfuhrung in die Informatik. Bonn, GI e.V..

Yellin, F. & Lindholm, T., 1999. The Java Virtual Machine Specification.

Second ed. Upper Saddle River: Prentice-Hall.

